

Example 6A-C: Calculation of y^+

Example 6A - C.

6A. Suppose you are interested in knowing how thick the linear sublayer is (that is, let $y^+ \leq 7$). Solve for y in this case:

$$y = \frac{y^+ \nu}{u_*} \leq \frac{7\nu}{u_*}.$$

6B. Suppose you want to know how big the node spacing ought to be if you want 3 equally-spaced computational nodes within $y^+ = 1$:

$$y = \frac{y^+ \nu}{n_{nodes} u_*} = \frac{(1)\nu}{(3)u_*} = \frac{\nu}{3u_*}.$$

6C. What is the value of y^+ for a system with $u_* = 0.5$ m/s, $\nu = 3.1 \times 10^{-6}$ m²/s. Its *first* computational node is at $y = 1.0 \times 10^{-3}$ m? Is this a good idea?

$$y^+ = \frac{yu_*}{\nu} = \frac{(1.0 \times 10^{-3})(0.5)}{3.1 \times 10^{-6}} = 161.3 [-].$$

Not only no, but ~~7734~~ no! Despite having the first computational node at 1 milli-meter, the y^+ calculation shows that the first computational node is too far away from the viscous and buffer layers.