

Example of Integral, Taylor, and Kolmogorov Eddy Scale Calculation Using the LIKE Algorithm

Example 3.6B. Consider water flowing in a pipe with $D=0.1$ m, at an average velocity of 5.5 m/s. The water is at 350 K and 5.7×10^5 Pa. Calculate eddy size, time, velocity, and associated Re for the integral, Taylor, and Kolmogorov eddies.

Solution.

Based on the T and P, the water has $\nu = 3.78 \times 10^{-7}$ m²/s. Notice that k and ε are needed, so the LIKE formulas will be used as well.

$$Re_h = \frac{x_{char} u_{char}}{\nu} = \frac{0.1 * 5.5}{3.78 \times 10^{-7}} = 1.45E06, \therefore \text{turbulent.}$$

$$\ell \approx 0.07D_h = 0.07 * 0.1 = 0.007 \text{ m (fast and easy approach)}$$

$$I_{meas, \text{pipe center}} = 0.144 Re_h^{-0.146} = 0.144 (1.45E06)^{-0.146} = 0.0181$$

Example of Integral, Taylor, and Kolmogorov Eddy Scale Calculation Using the LIKE Algorithm

$$k = \frac{3}{2}(\bar{u}I)^2 = \frac{3}{2}(5.5 * 0.0181)^2 = 0.0149 \text{ m}^2/\text{s}^2$$

$$\varepsilon = C_\mu \frac{k^{3/2}}{\ell} = 0.09 * \frac{(0.0149)^{3/2}}{0.007} = 0.0234 \text{ m}^2/\text{s}^3$$

For the integral eddies,

$$\ell_o = \ell \sim 7.00 \times 10^{-3} \text{ m (from previous slide)}$$

$$\tau_{\ell_o} = C_\mu \frac{k}{\varepsilon} = 0.09 \left(\frac{0.0149}{0.0234} \right) = 0.0573 \text{ s}$$

$$v_{\ell_o} = k^{1/2} = \sqrt{0.0149} = 0.122 \text{ m/s}$$

$$Re_{\ell_o} = C_\mu \frac{k^2}{\varepsilon \nu} = 0.09 \left(\frac{0.0149^2}{0.0234 \times 3.78 \times 10^{-7}} \right) = 2,259$$

Example of Integral, Taylor, and Kolmogorov Eddy Scale Calculation Using the LIKE Algorithm

For the Taylor eddies,

$$\lambda = \left(\frac{10k\nu}{\varepsilon} \right)^{1/2} = \left(\frac{10 * 0.0149 * 3.78 \times 10^{-7}}{0.0234} \right)^{1/2} = 1.55 \times 10^{-3} \text{ m}$$

$$\tau_\lambda = \left(\frac{15\nu}{\varepsilon} \right)^{1/2} = \left(\frac{15 * 3.78 \times 10^{-7}}{0.0234} \right)^{1/2} = 0.0156 \text{ s}$$

$$u_\lambda = \left(\frac{2k}{3} \right)^{1/2} = \left(\frac{2 * 0.0149}{3} \right)^{1/2} = 0.0997 \text{ m/s}$$

$$Re_\lambda = k \left(\frac{20}{3\varepsilon\nu} \right)^{1/2} = 0.0149 \left(\frac{20}{3 * 0.0234 * 3.78 \times 10^{-7}} \right)^{1/2} = 409$$

Example of Integral, Taylor, and Kolmogorov Eddy Scale Calculation Using the LIKE Algorithm

For the Kolmogorov eddies,

$$\eta = \left(\frac{\nu^3}{\varepsilon} \right)^{1/4} = \left[\frac{(3.78 \times 10^{-7})^3}{0.0234} \right]^{1/4} = 3.90 \times 10^{-5} \text{ m}$$

$$\tau_\eta = \left(\frac{\nu}{\varepsilon} \right)^{1/2} = \left(\frac{3.78 \times 10^{-7}}{0.0234} \right)^{1/2} = 4.02 \times 10^{-3} \text{ s}$$

$$v_\eta = (\nu \varepsilon)^{1/4} = (3.78 \times 10^{-7} * 0.0234)^{1/4} = 9.70 \times 10^{-3} \text{ m/s}$$

$$Re_\eta = 1$$

Expected Order of Eddy Values

Table 3.6A. Summary of Eddy Scales for Problem 3.6A.

	Integral Eddy	Taylor Eddy	Kolmogorov Eddy
Eddy Size (m)	7.00×10^{-3}	1.55×10^{-3}	3.90×10^{-5}
Eddy Time (s)	0.0573	0.0156	4.02×10^{-3}
Eddy Velocity (m/s)	0.122	0.0997	9.70×10^{-3}
Eddy Re (-)	2,259	409	1

Notice:

$$\ell_o > \lambda > \eta$$

$$\tau_{\ell_o} > \tau_{\lambda} > \tau_{\eta}$$

$$v_{\ell_o} > v_{\lambda} > v_{\eta}$$

$$Re_h > Re_{\ell_o} > Re_{\lambda} > Re_{\eta}$$

- There are many types of Re .
- Each Re has a different physical meaning.
- Make sure the correct one is used.
- For example, $Re_{\lambda} = 409$ ($< 2,200!$) for this turbulent problem, while $Re_h = 1.45 \times 10^6$.